Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture.
نویسندگان
چکیده
Across plant species, leaves vary enormously in their size and their venation architecture, of which one major function is to replace water lost to transpiration. The leaf hydraulic conductance (K(leaf)) represents the capacity of the transport system to deliver water, allowing stomata to remain open for photosynthesis. Previous studies showed that K(leaf) relates to vein density (vein length per area). Additionally, venation architecture determines the sensitivity of K(leaf) to damage; severing the midrib caused K(leaf) and gas exchange to decline, with lesser impacts in leaves with higher major vein density that provided more numerous water flow pathways around the damaged vein. Because xylem embolism during dehydration also reduces K(leaf), we hypothesized that higher major vein density would also reduce hydraulic vulnerability. Smaller leaves, which generally have higher major vein density, would thus have lower hydraulic vulnerability. Tests using simulations with a spatially explicit model confirmed that smaller leaves with higher major vein density were more tolerant of major vein embolism. Additionally, for 10 species ranging strongly in drought tolerance, hydraulic vulnerability, determined as the leaf water potential at 50% and 80% loss of K(leaf), was lower with greater major vein density and smaller leaf size (|r| = 0.85-0.90; P < 0.01). These relationships were independent of other aspects of physiological and morphological drought tolerance. These findings point to a new functional role of venation architecture and small leaf size in drought tolerance, potentially contributing to well-known biogeographic trends in leaf size.
منابع مشابه
Why are leaves hydraulically vulnerable?
As plant tissues dehydrate, water transport efficiency declines, a process typically attributed to air obstruction (embolism) in the xylem. Trifiló et al. (pages 5029– 5039) dissect leaf hydraulic vulnerability and show that both xylem and living tissues may be important. If confirmed and clarified, an important role for outside-xylem hydraulic decline will change our understanding of how plant...
متن کاملLeaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance.
Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conduct...
متن کاملLeaf Shrinkage with Dehydration: Coordination with Hydraulic Vulnerability and Drought Tolerance1[C][W][OPEN]
Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conduct...
متن کاملLeaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption.
Leaf venation is a showcase of plant diversity, ranging from the grid-like network in grasses, to a wide variety of dendritic systems in other angiosperms. A principal function of the venation is to deliver water; however, a hydraulic significance has never been demonstrated for contrasting major venation architectures, including the most basic dichotomy, "pinnate" and "palmate" systems. We hyp...
متن کاملHydraulic architecture of leaf venation in Laurus nobilis L
Veins are the main irrigation system of the leaf lamina and an understanding of the hydraulic architecture of the vein networks is essential for understanding leaf function. However, determination of leaf hydraulic parameters is challenging, because for most leaves the vein system is reticulate, contains a hierarchy of different vein sizes, and consists of leaky conduits. We present a new appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 156 2 شماره
صفحات -
تاریخ انتشار 2011